Akzo Nobel Loses Bid Worth ‘Billions’ Over Ichthys LNG Project

PCN – Communicating News In Protective Coatings Globally in Real-Time

Leading Source of Industry News on Protective Coatings for Oil & Gas, Pipelines, Marine and Construction

NEWSMAKERS:  * Akzo Nobel * Baltoflake™ * Coating Condition Survey * Corrosion Under Insulation * Drone Coating Inspection * Dulux * ExcelPlas Labs * Epoxy Coatings * Failure Analysis * Graphene * Heat-Flex * Hempel * Jotun * LNG * MIO * PCN * PPG * Protective Coatings * Self-Healing Coatings * SeaWide* Sherwin Williams * Smart Coatings


Akzo Nobel Loses Bid to Transfer Intertherm 228 Case Worth ‘Billions’ Over Ichthys LNG Project


Jotun’s Baltoflake: A Sustainable Solution for Offshore Wind Industry

Jotun Hellas Pioneers Vessel Coating Maintenance with Novel Aerial Drone Inspection Service

Sherwin Williams in The Battle Against Corrosion Under Insulation

What Will the Protective Coatings Industry Look Like in 2050?

Hempel Opens New Protective Coating Production Facility in China

Sherwin Williams Epoxy Beats Hempel and International in Comparative Assessment of Protective Paint Systems for Use on Heritage Artillery at Coastal Forts

SeaWide Distribution Launches Hempel’s New Antifouling Coating in North America


Mechanical Properties and Corrosion Protection Performance of Micro/nano Alumina Fillers Epoxy Coated Steel

Recycled Eggshell Waste in Zinc-rich Epoxy Coating for Corrosion protection of Mild Steel in a Controlled Elevated Temperature Saline Environment

Study of Laser Surface Texturing on the Adhesion Properties of Epoxy Zinc Paint

Facile Self-assembly Fabrication of Anticorrosive Epoxy Composite Material for Excellent Protective Coatings

In Situ Growth of Flower-like ZnO onto Graphene Oxide for the Synergistically Enhanced Anti-Corrosion Epoxy Coatings

Synergetic Inhibition and Corrosion-Diagnosing Nanofiber Networks for Self-Healing Epoxy Protective Coatings

Epoxy Composite Coating with Excellent Anti-Corrosion and Self-Healing Properties Based on Mesoporous Silica Nano-containers

A Highly Reliable Epoxy Anti-Corrosion Coating Material for Mild Steel based on Silver-Decorated Reduced Graphene Oxide–Sulfonated Polyaniline Ternary Nanocomposite

Performance Research of Natural Mica Modified with Zirconium-Based Metal–Organic Frameworks for an Epoxy Resin Anti-Corrosion Coating

Modification of Electrochemical Exfoliation of Graphene Oxide with Dopamine and Tannic to Enhance Anticorrosion Performance of Epoxy Coatings

Exploring Epoxy Coating Failures with ExcelPlas
While epoxy coatings are generally durable and effective at preventing corrosion, there are a few common types of epoxy coating failures that can occur:

  • Adhesion failure: This occurs when the epoxy coating fails to properly adhere to the surface of the pipe, which can be caused by factors such as improper surface preparation or a poorly formulated coating. Adhesion failure can result in the coating peeling or flaking off, exposing the underlying steel surface to corrosion.
  • Blistering: This occurs when small bubbles or blisters form on the surface of the epoxy coating, which can be caused by improper surface preparation, moisture contamination, or excessive heat during curing.
  • Cracking: This occurs when the epoxy coating develops small cracks, which can be caused by factors such as thermal expansion and contraction, improper coating thickness, or exposure to chemicals.
  • Delamination: This occurs due to intercoat or interfacial adhesion failure due to the presence of a weak boundary layer such as silicone or hydrocarbon oil contamination.



Failure Analysis and Investigation of Protective Coatings in Mining, Marine Offshore Oil & Gas Chemical Plants, Energy Infrastructure and Bridges (Ask the Experts)

Critical Questions for Protective Coatings for Asset Protection in Oil & Gas, LNG:

  • Why is the coating not stopping corrosion?
  • Why is the coating delaminating or blistering?
  • Has the coating been correctly specified / applied?
  • Does the coating meet the manufacturing standard, including properties such as correct hardness/cure, adhesion and thickness?
  • What surface preparation and atmospheric conditions must be achieved to successfully apply the coating?
  • Does the coating have any defects in it? How will these affect performance?
  • Why did the coating fail? Root cause assessment.
  • How can the coating be successfully repaired/remediated so that it doesn’t fail again?

ExcelPlas Labs can answer these questions and more…


PCN – Communicate Your Message Instantly with the Entire Global Protective Coatings Community
PCN is ideal for monitoring competitor activity and providing market intelligence

This newsletter is brought to you by ExcelPlas Coating Labs (http://www.excelplas.com/)

ExcelPlas Labs provides independent testing, analysis, and investigation on protective coatings to prevent corrosion.

ExcelPlas has extensive analytical capabilities for testing of Protective Coatings and Insulation Consulting for major oil and gas companies.

We conduct corrosion surveys, coating sampling, coating analysis, and testing to ensure coating specifications for a wide range of onshore and offshore clients in Australia and the Asia-Pacific Region.

ExcelPlas Labs offer a full range of coating testing and analytical services to Australia’s mining, oil, gas, and infrastructure sectors.

Forensic analysis for undertaking various coating-based failure investigations and problem-solving.

ExcelPlas Undertakes Analysis & Testing of Polymer Coating Systems including:

  • Epoxy Protective Coatings
  • Epoxy-Phenolic Protective Coatings
  • Fusion bonded epoxy (FBE) 
  • Dual-Layer Fusion bonded epoxy (DLFBE)
  • Liquid applied epoxy (LAE)
  • Abrasion-resistant overcoat (ARO)
  • Three-layer PE (3LPE)
  • Multi-component liquid spray  (MCL)
  • Heat shrink sleeves (HSS)

Testing on Coatings that ExcelPlas can Undertake includes:

  • Coating identification by Infra-red Analysis (FTIR)
  • Degree of Cure by Thermal Analysis (DSC)
  • Coating Filler Identification by X-ray Analysis (EDS/XRD)
  • Coating Microstructure by Embedding, Polishing, and Optical Microscopy (OM)
  • Coating Thermal Stability and Composition by Thermogravimetric Analysis (TGA)

DSC – Phase transition/volatiles / Tg / degree of cure/characterisation
TGA – Volatile compounds, inorganic mass % mix ratio
Element mapping for chlorides on paint flakes
Microscopy -Count layers and thickness of layers

  • Assess porosity and voids
  • Check distribution and orientation of filler particles

Condition monitoring and analysis of corrosion prevention coatings (epoxies, epoxy-phenolics)

Testing of Epoxy Coatings (LAE, FJC, FBE), heat shrink sleeves and tapes, barrier tapes, and meshes.

PCN is owned and operated by ExcelPlas Pty Ltd.  By subscribing to PCN you agree to receive regular PCN newsletters as well as the PCN platform using your email contact details to enhance the performance and functionality of PCN and its analytics reports.  These email contact details allow PCN to track page views and create more targeted and relevant content.  PCN provides an unsubscribe link at the bottom of each PCN newsletter.