Which Coating Companies Pay the Most Tax in Australia?

PCN – Communicating News In Protective Coatings Globally in Real-Time

Leading Source of Industry News on Protective Coatings for Oil & Gas, Pipelines, Marine and Construction

NEWSMAKERS:  * Akzo Nobel * Coating Condition Survey * Corrosion Under Insulation * DENSO * Elementis * Epoxy Coatings * ExcelPlas Labs * Failure Analysis * FORTIDE™ * Gardco * Geoffrey White * Graphene * Hempel * INPEX * Jotun * LNG * Microcapsules * PCN * PPG * Protective Coatings * Seal for Life * Self-Healing Coatings * Sherwin Williams * Tax Transparency Report * WATTYL


Which Coating Companies Pay the Most Tax in Australia?

With Total Income of $172 Mill Hempel Australia Only Paid $0.5Mil in Taxes

Mechanical Surface Preparation Standards for Maintenance Coatings

DENSO Release FORTIDE™ Epoxy Coatings

Elementis Launches New Additive to Prevent Flash Rust in WB Paint Systems

Gardco Introduces Protective Coatings Field Test Kit

INPEX Engineers Study Inhibitors to Suppress CUI

Seal for Life Industries Announce New Epoxy Polymer Coating


Spontaneously Self-Healing Silicone Polyurea Coating for Metal Corrosion Protection

Construction of a High-Performance Anti-Corrosion Epoxy Coating in the Presence of Poly(aniline-co-pyrrole) Nanospheres

Preparation and Testing of Anti-Corrosion Properties of New Pigments Containing Structural Units of Melamine and Magnesium Cations (Mg2+)

Mechanical Performance of Protective Epoxy Coatings with Bio-Based Ingredients for Flax-Fiber Composites

Mussel Inspired Improvement of Epoxy Protective Coatings

Experimental and Theoretical Evaluations on the Parallel-aligned Graphene Oxide Hybrid Epoxy Composite Coating Toward Wear Resistance

Polyurea Coating Containing GO/MA@PFAN Filler Provides Long-Term Shielding and Passive Performance to Resist Corrosion for N80 Steel

Effects of Compressive Damage on the Corrosion Protection Performance of Offshore Wind Power Coating Systems

Corrosion Protection Effect of Rust and Scale: A “Metal Protects Metal” Perception by Considering the Examples of Hematite and Magnetite

Improving Activity and Barrier Properties of Epoxy Modified Polyurethane Coating with In-situ Polymerized Polypyrrole Functionalized Graphene Oxide


Jotun Seeking Protective Coatings Territory Manager Protective (NSW)

Hempel Seeking Business Development Manager for Coatings for Oil & Gas

PPG Hiring Business Development Manager – Industrial Coatings Australia

Exploring Epoxy Coating Failures with ExcelPlas
While epoxy coatings are generally durable and effective at preventing corrosion, there are a few common types of epoxy coating failures that can occur:

  • Adhesion failure: This occurs when the epoxy coating fails to properly adhere to the surface of the pipe, which can be caused by factors such as improper surface preparation or a poorly formulated coating. Adhesion failure can result in the coating peeling or flaking off, exposing the underlying steel surface to corrosion.
  • Blistering: This occurs when small bubbles or blisters form on the surface of the epoxy coating, which can be caused by improper surface preparation, moisture contamination, or excessive heat during curing.
  • Cracking: This occurs when the epoxy coating develops small cracks, which can be caused by factors such as thermal expansion and contraction, improper coating thickness, or exposure to chemicals.
  • Delamination: This occurs due to intercoat or interfacial adhesion failure due to the presence of a weak boundary layer such as silicone or hydrocarbon oil contamination.



Failure Analysis and Investigation of Protective Coatings in Mining, Marine Offshore Oil & Gas Chemical Plants, Energy Infrastructure and Bridges (Ask the Experts)

Critical Questions for Protective Coatings for Asset Protection in Oil & Gas, LNG:

  • Why is the coating not stopping corrosion?
  • Why is the coating delaminating or blistering?
  • Has the coating been correctly specified / applied?
  • Does the coating meet the manufacturing standard, including properties such as correct hardness/cure, adhesion and thickness?
  • What surface preparation and atmospheric conditions must be achieved to successfully apply the coating?
  • Does the coating have any defects in it? How will these affect performance?
  • Why did the coating fail? Root cause assessment.
  • How can the coating be successfully repaired/remediated so that it doesn’t fail again?

ExcelPlas Labs can answer these questions and more…


PCN – Communicate Your Message Instantly with the Entire Global Protective Coatings Community
PCN is ideal for monitoring competitor activity and providing market intelligence

This newsletter is brought to you by ExcelPlas Coating Labs (http://www.excelplas.com/)

ExcelPlas Labs provides independent testing, analysis, and investigation on protective coatings to prevent corrosion.

ExcelPlas has extensive analytical capabilities for testing of Protective Coatings and Insulation Consulting for major oil and gas companies.

We conduct corrosion surveys, coating sampling, coating analysis, and testing to ensure coating specifications for a wide range of onshore and offshore clients in Australia and the Asia-Pacific Region.

ExcelPlas Labs offer a full range of coating testing and analytical services to Australia’s mining, oil, gas, and infrastructure sectors.

Forensic analysis for undertaking various coating-based failure investigations and problem-solving.

ExcelPlas Undertakes Analysis & Testing of Polymer Coating Systems including:

  • Epoxy Protective Coatings
  • Epoxy-Phenolic Protective Coatings
  • Fusion bonded epoxy (FBE) 
  • Dual-Layer Fusion bonded epoxy (DLFBE)
  • Liquid applied epoxy (LAE)
  • Abrasion-resistant overcoat (ARO)
  • Three-layer PE (3LPE)
  • Multi-component liquid spray  (MCL)
  • Heat shrink sleeves (HSS)

Testing on Coatings that ExcelPlas can Undertake includes:

  • Coating identification by Infra-red Analysis (FTIR)
  • Degree of Cure by Thermal Analysis (DSC)
  • Coating Filler Identification by X-ray Analysis (EDS/XRD)
  • Coating Microstructure by Embedding, Polishing, and Optical Microscopy (OM)
  • Coating Thermal Stability and Composition by Thermogravimetric Analysis (TGA)

DSC – Phase transition/volatiles / Tg / degree of cure/characterisation
TGA – Volatile compounds, inorganic mass % mix ratio
Element mapping for chlorides on paint flakes
Microscopy -Count layers and thickness of layers

  • Assess porosity and voids
  • Check distribution and orientation of filler particles

Condition monitoring and analysis of corrosion prevention coatings (epoxies, epoxy-phenolics)

Testing of Epoxy Coatings (LAE, FJC, FBE), heat shrink sleeves and tapes, barrier tapes, and meshes.

PCN is owned and operated by ExcelPlas Pty Ltd.  By subscribing to PCN you agree to receive regular PCN newsletters as well as the PCN platform using your email contact details to enhance the performance and functionality of PCN and its analytics reports.  These email contact details allow PCN to track page views and create more targeted and relevant content.  PCN provides an unsubscribe link at the bottom of each PCN newsletter.